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Abstract. A simple model for the wetting or depinning transition of a two-dimensional solid-
on-solid (SOS) interface in a short-range periodic pinning potential which alternates between
attraction and infinite repulsion is analysed exactly. The interface is specified by transverse
displacement variablesxi which vary continuously in the intervalxmin < xi < ∞, and the
stretching energy is proportional to

∑
i |xi+1−xi |. Both the semi-infinite and infinite geometries

xmin = 0, −∞ are considered. For the most part the wetting transition in the continuum model
is similar to the transition in restricted SOS models with corrugated potentials, in which thexi
are restricted to integers andxi+1 − xi to ±1, 0, but there are some qualitative differences in
the phase diagrams involving re-entrant behaviour.

The wetting transition in the semi-infinite two-dimensional Ising model with a short-range
interface pinning force at the boundary was first studied in detail by Abraham [1] in
1980. At the wetting temperatureTW the second temperature derivative of the interface
free energy is discontinuous, and the characteristic lengthsξ⊥, ξ‖ of interface fluctuations
diverge as(TW − T )−1, (TW − T )−2, respectively, asT approachesTW from below.
Following publication of [1], many authors [2–10] pointed out that simply soluble solid-
on-solid (SOS) models, in which the position of the interface is specified by transverse
displacement variablesxi , with i = 0,±1,±2, . . . ,±∞, exhibit depinning transitions in
the same universality class. This is true both of discrete SOS models, in which thexi are
restricted to integers, and models in which thexi vary continuously.

Recently Nechaev and Zhang [11] studied the wetting transition in an SOS model with
a ‘corrugated’ pinning potential that alternates between attraction and repulsion. Swain and
Parry [12] extended their work. Corrugated pinning potentials are of interest in connection
with the more complicated case of walls with random roughness [11–16].

Roughly speaking, an interface bound near a wall unbinds, as the temperature is
raised, when the entropic repulsion due to the hard wall exceeds the attraction due to
the pinning potential. There is no such repulsion in the case of an interface in the infinite
geometry subject to a purely attractive pinning force, and the interface remains bound at
all temperatures [2–10]. On the other hand, corrugated potentials that alternate between
attraction and repulsion do give rise to entropic repulsion in the infinite geometry. Nechaev
and Zhang [11] showed that with corrugated potentials there are wetting transitions with
the same universal characteristics described above in both the the semi-infinite and infinite
geometries, even when the average interaction is repulsive.

The results of Nechaev and Zhang [11] and Swain and Parry [12] were obtained for
restricted solid on solid (RSOS) models, in which the transverse displacementsxi of the
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interface are restricted to integers andxi+1−xi to ±1, 0. In this paper an analogous system
with continuouslyvarying xi (CSOS model) is considered. The CSOS Hamiltonian is

H = J
∑
all i

|xi+1− xi | +
∑
oddi

U1(xi)+
∑
eveni

U2(xi) (1)

wherexmin < xi < ∞, with xmin = 0 andxmin = −∞ for the semi-infinite and infinite
geometries. The three sums in equation (1) represent the stretching energy of the interface
and the pinning potential energy for odd and eveni. The CSOS interface is less rigid than
the RSOS interface, both at low and high temperatures, sincexi+1− xi may take both very
small and very large values. The depinning transition of the noncorrugated CSOS model
with U1(x) = U2(x) is considered in [2]. The purpose of this letter is to point out some
qualitative differences in the phase diagrams of the corrugated CSOS and RSOS models
involving re-entrant behaviour. In both corrugated models the wetting transition has the
same universal features described in the introductory paragraph.

The interface free energy of the CSOS model of equation (1) is determined by the
largest eigenvalueλ of the transfer matrix or kernel. The eigenvalueλ and eigenfunction
ψ(x) satisfy the integral equation

λψ(x) =
∫ ∞
xmin

dy exp[−K|x − y| − V2(y)]
∫ ∞
xmin

dz exp[−K|y − z| − V1(z)]ψ(z) (2)

whereK = J/kBT , andV (x) = U(x)/kBT . With the identity(−d2/dx2+K2) exp(−K|x−
y|) = 2Kδ(x − y), equation (2) may be converted to the integro-differential equation(
− d2

dx2
+K2

)
ψ(x) = 2K

λ
exp[−V2(x)]

∫ ∞
xmin

dz exp[−K|x − z| − V1(z)]ψ(z) . (3)

For a piecewise-constantpotentialV2(x), such as a rectangular well or barrier, a second
application of the identity yields the fourth-order differential equation(

− d2

dx2
+K2

)2

ψ(x) = (2K)2

λ
exp[−V1(x)− V2(x)]ψ(x) . (4)

We now consider the semi-infinite geometryx > xmin = 0 and the corrugated potential

U1(x) =


∞ x < 0

−U0 0< x < R1

0 x > R1

U2(x) =
{
∞ x < R2

0 x > R2
(5)

with R2 > R1, which is alternately attractive and infinitely repulsive. ForR2 > R1 the
stretching and the pinning potential energies in equation (1) compete, i.e. are minimized by
different interface configurations, and the average potential1

2(U1+ U2) is repulsive.
With the corrugated potential (5) it is simple to calculateλ andψ(x). Since the right-

hand side of equation (3) vanishes forx < R2 and the right-hand side of equation (4) equals
(2K)2λ−1ψ(x) for x > R2, the bound eigenfunction has the form

ψ(x) =
{
αeKx + βe−Kx 0< x < R2

µ1e−P1x + µ2e−P2x x > R2

(6)

whereP2 > P1 > 0 and

−P 2
1 +K2 = P 2

2 −K2 = 2K√
λ
. (7)
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Equation (2) impliesψ ′(0)/ψ(0) = K and the continuity ofψ(x) andψ ′(x) at x = R2.
Thusβ = 0,µ1 = (K+P2)(P2−P1)

−1e(K+P1)R2α, andµ2 = (K+P1)(P1−P2)
−1e(K+P2)R2α.

Substituting (6) with theseβ, µ1, andµ2 into (3) leads to a further requirement,

(eV0 − 1)(e2KR1 − 1)− [4K(K + P1)(P2−K)−1(P2− P1)
−1− 1]e2KR2 − 1= 0 (8)

whereV0 = U0/kBT , for a consistent solution. Equations (7) and (8) determine the decay
constantsP1 andP2 in (6). The criticality condition for the wetting or depinning transition

(eV0 − 1)(e2KR1 − 1)− (2
√

2+ 3)e2KR2 − 1= 0 (9)

follows from equation (8) in the limitP1 = (2K2− P 2
2 )

1/2→ 0.
The structure of the bound interface is examined in more detail in the appendix, where

the probability density for the displacement variablexi is calculated.
We now turn to the CSOS model in the infinite geometry, i.e.xmin = −∞ in equations

(2) and (3), and consider the corrugated pinning potential

U1(x) =
{
−U0 |x| < R1

0 |x| > R1
U2(x) =

{
∞ |x| < R2

0 |x| > R2
(10)

with R2 > R1. The bound-state eigenfunctionψ(x) satisfying (2)–(4) is an even function
of x and forx > 0 is given by (6) withα = β. Using the continuity ofψ(x) and ofψ ′(x)
at x = R2 and substituting (6) into (3), one finds thatP1 andP2 satisfy

(eV0 − 1)(2KR1+ sinh 2KR1)+ 2KR2+ sinh 2KR2− 4K(K2− P 2
1 )
−1(P2− P1)

−1

×[K(P1+ P2) sinh 2KR2+ (K2+ P1P2)(cosh 2KR2− 1)+ 2P1P2] = 0

(11)

which implies the criticality condition

(eV0 − 1)(2KR1+ sinh 2KR1)+ 2KR2− 3 sinh 2KR2− 2
√

2(cosh 2KR2− 1). (12)

For comparison we also consider an analogous RSOS model, in whichxi are restricted
to integers andxi+1 − xi to ±1, 0. In the semi-infinite geometry a corrugated potential
similar to the CSOS potential withR2 > R1 is imposed by restricting the allowedxi to
integersxi > 0 for odd i and to integersxi > 1 for eveni. The energy of an interface
configuration is defined asj times the number of nonvanishing|xi+1 − xi | minusu times
the number of vanishingxi with i odd. This is a special case of more general models
considered in [11, 12]. For evenn the partition functionZ(x, n) of an interface with ends
at x, n andx0, n0 satisfies

Z(1, n+ 2) = [1+ (ev + 1)t2]Z(1, n)+ 2tZ(2, n)+ t2Z(3, n) (13)

Z(2, n+ 2) = 2tZ(1, n)+ (1+ 2t2)Z(2, n)+ 2tZ(3, n)+ t2Z(4, n) (14)

Z(x, n+ 2) = t2Z(x − 2, n)+ 2tZ(x − 1, n)+ (1+ 2t2)Z(x, n)

+2tZ(x + 1, n)+ t2Z(x + 2, n) x = 3, 4, . . . ,∞ (15)

wheret = e−k, k = j/kBT , v = u/kBT .
Difference equations that determine the eigenvectorsψ(x) and eigenvaluesλ of the

transfer matrix follow from the substitutionZ(x, n) → ψ(x)λn/2 in equations (13)–(15).
One finds a single-bound eigenvector

ψ(x) = α[e−p1x − (−1)xe−p2x ] x = 1, 2, . . . ,∞ (16)

coshp2 = coshp1+ ek = 1
2(λ

1/2+ 1)ek (17)

ev = 1+ ep1+p2 . (18)
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Figure 1. Critical line (9) for the semi-infinite CSOS model (full curves) and the corresponding
RSOS result (19) in the variableskBT /j , u/j (broken line).

In the limit p1→ 0 equations (17) and (18) yield the criticality condition

ev = ek[1+ 2e−k + (1+ 2e−k)1/2]. (19)

Finally we consider the infinite-space version of this RSOS model. The energy of an
interface configuration is defined as above, but now the allowedxi are 0,±1,±2, . . . ,±∞
for odd i and±1,±2, . . . ,±∞ for eveni. The partition function satisfies equations (14)
and (15), but an extra term evt2Z(−1, n) must be included on the right-hand side of (13).
Since the bound state has even parity,ψ(x) is again given by (16) and (17), but ev on the
left-hand side of (18) and (19) is replaced by 2ev.

The critical line (9) for the semi-infinite CSOS model (1) with the corrugated pinning
potential (5) is shown in the variableskBT /JR1, U0/JR1 in figure 1 for several values
of R2/R1. The broken curve is the corresponding RSOS critical line (19) in the variables
kBT /j , u/j .

The areas below and above a given critical line in figure 1 correspond to the pinned
and depinned phases, respectively. The transition temperature increases monotonically as
the strengthU0 of the pinning potential increases and as the rangeR2 of the repulsive
barrier decreases, as expected. AtT = 0 the CSOS critical line intersects the horizontal
axis atU0 = 2J (R2−R1). This intercept corresponds to a transition in the ground state of
the system. The lowest-energy interface is straight, unbound, and infinitely degenerate for
U0 < 2J (R2− R1) but bound forU0 > 2J (R2− R1), with xi zig-zagging betweenR1 and
R2 for odd and eveni, respectively.

The lowest energy RSOS interface is also straight and unbound foru < 2j and bound
with a zig-zag form foru > 2j . In contrast to the CSOS case, the broken RSOS critical
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Figure 2. Critical line (9) for the semi-infinite CSOS model (full curves) and the corresponding
RSOS result (19) in the variablesv, k (broken line).

line in figure 1 does not intersect the horizontal axis atu = 2j , where the ground state
transition takes place, but atu = j . The ‘re-entrance’ of the critical line atT = 0, pointed
out by Nechaev and Zhang [11], has its origin in the discrete RSOS energy spectrum. The
interface is bound forj < u < 2j at very low temperatures, despite the unbound, infinitely
degenerate ground state, because the lowest-energy excitations of the straight interface cost
less energy (2j−u instead ofj ) if the straight interface is atxi = 1 instead ofxi = 2 , 3, . . ..

In figure 2 the CSOS and RSOS critical lines of figure 1 are replotted in terms of the
variablesV0,KR1 and v, k of equations (9) and (19), respectively. The areas above and
below a given critical line correspond to the pinned and depinned phases, respectively.

The CSOS critical lines in figure 2 have a double-valued, re-entrant form. ForR2 > R1

a bound interface eventually unbinds asKR1 increases at constantV0 and it becomes too
taut to conform to the pinning potential. A bound interface also eventually unbinds asKR1

decreases at constantV0 and the interface fluctuations increase, due to entropic repulsion
from the hard wall.

In contrast to the CSOS critical lines in figure 2, the broken RSOS critical line is
monotonic. A bound RSOS interface does not unbind ask decreases at constantv, since
the constraintxi+1− xi = ±1, 0 severely limits the entropic repulsion.

We now turn from the semi-infinite to the infinite geometry. The critical line (12) for the
infinite CSOS interface model (1) with the corrugated pinning potential (10) is shown in the
variableskBT /JR1, U0/JR1 in figure 3 for several values ofR2/R1. The broken curve is
the corresponding RSOS critical line (equation (19) with ev → 2ev) in the variableskBT /j ,
u/j . The low-temperature behaviour in figures 1 and 3 is very similar, and the intercepts of
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Figure 3. Critical line (12) for the infinite CSOS model (full curves) and the corresponding
RSOS result ((19) with ev → 2ev) in the variableskBT /j , u/j (broken curve).

the horizontal axis atT = 0 are the same. At low temperatures it does not matter whether
there is an impenetrable wall atxi = 0, i odd or not, because the interface fluctuations are
small, and the repulsive part of the corrugated potential pushes the interface out beyond
xi = 0. For the same reason as in the semi-infinite geometry, the critical line of the infinite
RSOS model is re-entrant atT = 0. The critical line intersects theT = 0 axis atu = j ,
while the ground-state transition is atu = 2j . The curves in figure 1 rise less steeply than
in figure 3 due to the greater entropy of repulsion in the semi-infinite geometry.

In figure 4 the CSOS and RSOS critical lines of figure 3 for the infinite geometry
are replotted in terms of the variablesV0,KR1 and v, k of equations (12) and (19) with
ev → 2ev, respectively. In contrast to the semi-infinite CSOS results shown in figure 2,V0

is finite in the limitKR1 → 0 and increases monotonically withKR1. Without the extra
entropic repulsion due to the impenetrable wall atxi = 0 for i odd, a bound interface does
not unbind asKR1 is reduced at constantV0.

In the depinning transitions of the corrugated CSOS and RSOS models in both the
semi-infinite and infinite geometries, the critical exponents are the same as for ordinary
critical wetting (see the first paragraph). This is because the decay constantsP1 andp1 of
the bound CSOS and RSOS interfaces, defined by (6) and (16), respectively, vanish linearly
as the critical line is approached along any nontangential straight line.

In summary we have found two main differences between the transitions of the CSOS
and RSOS models with corrugated potentials.

(1) In contrast to the CSOS model, the critical lines of both the semi-infinite and infinite
RSOS models are re-entrant atT = 0. In figures 1 and 3 the RSOS critical lines intersect
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Figure 4. Critical line (12) for the infinite CSOS model (full curves) and the corresponding
RSOS result ((19) with ev → 2ev) in the variablesv, k (broken line).

the T = 0 axis atu = j , whereas the ground-state transition takes placeu = 2j . This has
its origin in the discrete energy spectrum of the RSOS model. Forj < u < 2j the interface
is bound at low but nonzero temperatures, despite a straight, infinitely degenerate, unbound
ground state, because low-energy excitations cost less energy if the straight interface is at
xi = 1 rather thanxi = 2, 3 . . ..

(2) In contrast to the RSOS model, the critical line of the semi-infinite CSOS model in
the variablesV0,KR1 (see figure 2) has a re-entrant form. For very largeKR1 the interface
is too taut to conform to the corrugated potential and is unbound. AsKR1 is reduced at
constantV0, the interface first binds and then, as the entropic repulsion increases, unbinds.
Neither the infinite CSOS model nor the semi-infinite and infinite RSOS models undergo
this second transition.

Appendix

For a bound CSOS interface the probability densitiesP1(xi), P2(xi) for the displacement
variablexi , with i odd and even, respectively, are given by

P1(x) = c1ψ(x)
2e−V1(x) P2(x) = c2φ(x)

2e−V2(x). (A1)

Herec1 andc2 are normalization constants, chosen so that
∫∞
xmin
P(x) dx = 1, ψ(x) is given

in equation (6), andφ(x) is proportional to the integral on the right-hand side of (3). From
equations (3), (6), and (7)

φ(x) = µ1e−P1x − µ2e−P2x x > R2. (A2)
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Figure A1. Probability densitiesP1(x) (full curve) andP2(x) (broken curve) for the bound
interface of the semi-infinite CSOS model withR2 = 2R1, KR1 = 1

2 , andV0 = 4.

With ψ(x) andφ(x) normalized as in (6) and (A2),c1 = c2 in (A1).
The probability densitiesP1(x) andP2(x) for the bound interface of the semi-infinite

CSOS model withR2 = 2R1, KR1 = 1
2, andV0 = 4 are shown in figure A1. Recall that

R1 andR2, defined in equation (5), are the ranges of the attractive and infinitely repulsive
parts of the corrugated potential. The functionP1(x) (full curve) is strongly enhanced for
0 < x < R1 and discontinuous atx = R1, due to the factor e−V1(x) in equation (A1).
The other functionP2(x) (broken curve) vanishes identically forx < R2, due to the factor
e−V2(x) in (A1). In its ground state the interface zig-zags back and forth between the values
xi = R1 and R2 for odd and eveni, respectively. Note that the probability densities
P1(x) andP2(x), which, of course, include thermal fluctuations, have peaks at these same
values. Asx increases pastR2, the corrugated potential influences the interface increasingly
less, and the two curves in figure A1 approach each other. BothP1(x) andP2(x) decay
asymptotically asae−2P1x for largex, with the same amplitudea.
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